Interpolation of Functions over a Measure Space and Conjectures about Memory

Andrzej Ehrenfeucht*
Department of Computer Science, University of Colorado, Boulder, Colorado 80302

AND
Jan Mycielski ${ }^{\dagger}$
Department of Mathematics, University of Colorado, Boulder, Colorado 80302

Communicated by G. G. Lorentz
Received September 23, 1971

1. Introduction

Let X be a set and f a bounded real valued function over X. Let $N \subseteq X$ be a finite set and suppose that f restricted to N (in symbols $f \upharpoonright N$) is known. We will define an algorithm to estimate $f(x)$ for any $x \in X$. Let a collection \mathbf{C} of subsets of X be given such that \mathbf{C} covers X.

For any bounded nonempty set S of real numbers, $\operatorname{mid} S=\frac{1}{2}(\sup S+\inf S)$ and $\operatorname{diam} S=\sup S-\inf S$.

Algorithm. Given $x \in X$ we choose $C \in \mathbf{C}$ such that $x \in C, C \cap N \neq \varnothing$ and $\operatorname{diam} f(C \cap N)$ is small and we estimate $f(x)$ as $\operatorname{mid} f(C \cap N)$.

This a familiar procedure if X is a metric space, f is continuous, and all sets $C \in \mathbf{C}$ have small diameters. But we are interested, e.g. in the case $X=[0,1]^{30}$. In this case every covering \mathbf{C} of X with sets of diameters $\leqslant 1 / n$ contains more than n^{30} sets (in other words the entropy of X is high, see [8]) and the algorithm will not work unless N has at least n^{30} elements (otherwise N could not intersect all sets of a subcovering of \mathbf{C}). Thus, our assumption that $f \upharpoonright N$ is known entails the storage of an enormous amount of information. It is the purpose of this paper to discuss stronger suppositions on f and \mathbf{C} which imply that the algorithm works and allow for smaller \mathbf{C} and N.

[^0]In our case it is more natural to assume a probability measure μ over X and "small measure" will play the rôle of "small diameters" of the sets in C.

This setting suggests other algorithms related to statistical estimation procedures, e.g. choose $C \in \mathbf{C}$ with $x \in C$ such that the estimated variance of f over C is small. Then estimate $f(x)$ as the estimated mean of f over C. One could also think of algorithms using several (or all) $C \in \mathbf{C}$ with $x \in C$ and estimate $f(x)$ as some weighted mean of the estimated means of f over the C 's (weights could be functions of the estimated variances of f over the C 's). (See Remark 5 in Section 3 for some references related to such ideas; see also [13] for Stone-Weierstrass-type approximations to measurable functions.)

But in this paper we will consider only the simple algorithm stated at the beginning. In Sections 2 and 3 we prove some theorems about it. The remaining Section 4 is a study of some finite functions which we call k-continuous and for which the algorithm is efficient.

Our motivation for this work were attempts to imagine a mechanism having certain properties of the brain in particular its learning and recognition ability. In Section 3, Remark 3, we state a conjecture on the learning mechanism of the brain. This conjecture says that learning neurons use an interpolation algorithm as above.

2. General Theorems

Let $\epsilon \geqslant 0$ and let I_{t}^{ϵ} be the closed interval $[t-\epsilon, t+\epsilon]$; in particular $I_{t}^{0}=\{t\}$.

Lemma 1. If $A \cap f^{-1}\left(I_{f(x)}^{\epsilon}\right) \neq \varnothing$ then

$$
|f(x)-\operatorname{mid} f(A)| \leqslant \epsilon+\frac{1}{2} \operatorname{diam} f(A) .
$$

Proof. Choose $y \in A \cap f^{-1}\left(I_{f(x)}^{\epsilon}\right)$. Then

$$
\begin{align*}
|f(x)-\operatorname{mid} f(A)| & \leqslant|f(x)-f(y)|+|f(y)-\operatorname{mid} f(A)| \\
& \leqslant \epsilon+\frac{1}{2} \operatorname{diam} f(A) .
\end{align*}
$$

Let μ be a probability measure over X, and let f and all $C \in \mathbf{C}$ be μ-measurable.

Let the sequence $x_{1}, \ldots, x_{n}, x \in X$ be choosen at random. We put $N=\left\{x_{1}, \ldots, x_{n}\right\}$. Thus, N is a random variable over the probability measure space $\left\langle X^{n}, \mu^{n}\right\rangle$.

Let K be a relation over, i.e., a subset of, the space $X^{n} \times \mathbb{R}^{n} \times X \times \mathbf{C}$.

We define

$$
\begin{aligned}
P(f, \mathbf{C}, K, n, \epsilon)= & \text { Probability }\left\{C \cap N \cap f^{-1}\left(I_{f(x)}^{\epsilon}\right) \neq \varnothing \text { for all } C \in \mathbf{C}\right. \\
& \text { such that } \left.\left(x_{1}, \ldots, x_{n}, f\left(x_{1}\right), \ldots, f\left(x_{n}\right), x, C\right) \in K\right\} .
\end{aligned}
$$

By Lemma 1 we immediately get the following.
Theorem 2. With probability not less than $P(f, \mathbf{C}, K, n, \epsilon)$ the inequality

$$
\begin{equation*}
|f(x)-\operatorname{mid} f(C \cap N)| \leqslant \epsilon+\frac{1}{2} \operatorname{diam} f(C \cap N) \tag{1}
\end{equation*}
$$

is true for all $C \in \mathbf{C}$ with $\left(x_{1}, \ldots, x_{n}, f\left(x_{1}\right), \ldots, f\left(x_{n}\right), x, C\right) \in K$.
This theorem is still too general to have practical importance since P may be close to 1 by the mere fact that the probability of the existence of any $C \in \mathbf{C}$ such that $\left(x_{1}, \ldots, x_{n}, f\left(x_{1}\right), \ldots, f\left(x_{n}\right), x, C\right) \in K$ is very small. On the other hand, one may have some K 's free from this defect. In fact the only K considered in this paper is as follows $(\ldots, x, C) \in K$ iff $x \in C$. Thus, since \mathbf{C} covers X, the above objection does not apply. (It is possible however that other K 's are interesting, especially K 's involving a condition $\operatorname{card}(C \cap N) \geqslant s$.) Let

$$
\begin{aligned}
P_{0}(f, \mathbf{C}, n, \epsilon)= & \text { Probability }\left\{C \cap N \cap f^{-1}\left(I_{f(x)}^{\epsilon}\right) \neq \varnothing\right. \\
& \text { for all } C \in \mathbf{C} \text { such that } x \in C\} .
\end{aligned}
$$

By Theorem 2 (or directly from Lemma 1) we get the following information on the algorithm.

Corollary 3. With probability not less than $P_{0}(f, C, n, \epsilon)$ the inequality (1) is true for every $C \in \mathbf{C}$ with $x \in C$.

The following basic Lemma will be used in our estimates of P_{0}.
Let \mathbf{D} be a finite collection of μ-measurable subsets of X. We put

$$
d=\operatorname{card}(\mathbf{D})
$$

and

$$
\mu_{0}=\min \{\mu(D): D \in \mathbf{D}\}
$$

Lemma 4. The probability that $N \cap D \neq \varnothing$ for every $D \in \mathbf{D}$ is not less then

$$
1-d\left(1-\mu_{0}\right)^{n}
$$

Proof. Let $s(N)$ be the number of sets $D \in \mathbf{D}$ which are not intersected
by N. Clearly the expected value of $s(N)$ is $\leqslant d\left(1-\mu_{0}\right)^{n}$. Since $s(N)=0$ or $s(N) \geqslant 1$; therefore, the probability that $s(N)=0$ is $\geqslant 1-d\left(1-\mu_{0}\right)^{n}$. Q.E.D.

Now let $X_{0} \subseteq X$ be μ-measurable and, for every $x \in X_{0}$, let $\mathbf{D}(x)$ be a collection of μ-measurable subsets of X such that for every $C \in \mathbf{C}$ with $x \in C$ there exists a $D \in \mathbf{D}(x)$ with $D \subseteq C \cap f^{-1}\left(I_{f(x)}^{\prime}\right)$. We put

$$
d_{0}=\max \left\{\operatorname{card}(\mathbf{D}(x)): x \in X_{0}\right\}
$$

and

$$
\mu_{0}=\inf \left\{\mu(D): D \in \mathbf{D}(x), x \in X_{0}\right\} .
$$

Theorem 5. $\quad P_{0}(f, \mathbf{C}, n, \epsilon) \geqslant \mu\left(X_{0}\right)\left(1-d_{0}\left(1-\mu_{0}\right)^{n}\right)$.
Proof. Clearly

$$
\begin{aligned}
P_{0}(f, \mathbf{C}, n, \epsilon) & \geqslant \operatorname{Probability}\left\{x \in X_{0} \text { and } N \cap D \neq \varnothing \text { for every } D \in \mathbf{D}(x)\right\} \\
& \geqslant \mu\left(X_{0}\right)\left(1-d_{0}\left(1-\mu_{0}\right)^{n}\right),
\end{aligned}
$$

the last inequality following from Lemma 4.
Q.E.D.

In the next section we shall consider a more concrete situation, with $\epsilon=0$, and define $\mathbf{D}(x)$ so that Corollary 3 and Theorem 5 will yield interesting estimates.

Now let

$$
\begin{aligned}
Q_{0}(f, \mathbf{C}, n, \epsilon)= & \text { Probability }\left\{C \cap N \cap f^{-1}\left(I_{f(x)}^{\epsilon}\right) \neq \varnothing \text { for all } x \in X\right. \\
& \text { and all } C \in \mathbf{C} \text { with } x \in C\} .
\end{aligned}
$$

The following theorem is analogous to Corollary 3 (a similar analog of Theorem 2 would be also possible) and follows immediately from Lemma 1.

Theorem 6. With probability not less than $Q_{0}(f, \mathbf{C}, n, \epsilon)$ the inequality (1) is true for all $x \in X$ and all $C \in \mathbf{C}$ with $x \in C$.

Now let $\mathbf{D}(x)$ and μ_{0} be as in Theorem 5. We put

$$
d_{1}=\operatorname{card}\left(\bigcup_{x \in X} \mathbf{D}(x)\right) .
$$

Theorem 7. $Q_{0}(f, \mathbf{C}, n, \epsilon) \geqslant \mu\left(X_{0}\right)\left(1-d_{1}\left(1-\mu_{0}\right)^{n}\right)$.
The proof is similar to that of Theorem 5 .

3. Interpolation over $\{0,1\}^{m}$

$\{0,1\}^{m}$ denotes the set of all sequences of 0 's and l's of length m. Let $k \leqslant m$.

A k-cylinder in $\{0,1\}^{m}$ is any set $C \subseteq\{0,1\}^{m}$ which is of the form

$$
C=\left\{\left(\xi_{1}, \ldots, \xi_{m}\right):\left(\xi_{i_{1}}, \ldots, \xi_{i_{k}}\right)=\left(c_{1}, \ldots, c_{k}\right)\right\}
$$

where $1 \leqslant i_{1}<\cdots<i_{k} \leqslant m$ and $\left(c_{1}, \ldots, c_{k}\right) \in\{0,1\}^{k}$. We put also $B(C)=$ $\left\{i_{1}, \ldots, i_{k}\right\} ; \mathrm{C}_{k}$ denotes the family of all k-cylinders.

Let f be a function with domain $X \subseteq\{0,1\}^{m}$ and μ a probability measure over X. We shall say that f is k-continuous if X can be covered with a collection \mathbf{C} of k-cylinders such that $f \upharpoonright(C \cap X)$ is a constant for every $C \in \mathbf{C}$. (See Section 4 for examples of such functions.)

We put

$$
\mu_{f}=\min \left\{\mu\left(C \cap f^{-1}\{f(x)\}\right): C \in \mathbf{C}_{k} \text { and } x \in C \cap X\right\} .
$$

ThEOREM 8. If $x_{1}, \ldots, x_{n}, x \in X$ are chosen at random then, with probability not less than $1-\binom{m}{k}\left(1-\mu_{f}\right)^{n}$,

$$
f(x)=v
$$

for every C and v such that $x \in C \in \mathbf{C}_{k}$ and $f\left(x_{i}\right)=v$ for all $x_{i} \in C \cap\left\{x_{1}, \ldots, x_{n}\right\}$.
Proof. For all $x \in X$ we put $\mathbf{D}(x)=\left\{C \cap f^{-1}\{f(x)\}: x \in C \in \mathbf{C}_{k}\right\}$. Then $\operatorname{card}(\mathbf{D}(x)) \leqslant\binom{ m}{k}$. Hence, Theorem 8 follows from Corollary 3 and Theorem 5 for $X_{0}=X$ and $\epsilon=0$.

Remark 1. Although Theorem 8 is valid without any assumptions on f, it is more interesting for k-continuous f 's since for such f 's there are $C \in \mathbf{C}_{k}$ with $x \in C$ and $f \upharpoonright C$ being a constant. Moreover, the probability that $C \cap N \neq \varnothing$ for any such C may be large.
f will be called regular k-continuous if, for every r in the range of $f, f^{-1}\{r\}$ is a union of k-cylinders. (See Section 4 for examples of such functions.) Let μ be the probability measure over X defined by

$$
\begin{equation*}
\mu(Y)=\operatorname{card}(Y) / \operatorname{card}(X), \quad \text { for all } \quad Y \subseteq X \tag{2}
\end{equation*}
$$

Theorem 9. If is regular k-continuous, μ is defined by (2), C and v are as in Theorem 8 and $m \geqslant 2 k$ then $f(x)=v$ with probability not less than

$$
1-\binom{m-k}{k}\left(1-4^{-k}\right)^{n}
$$

Proof. For every $x \in X$ let $x \in C_{x} \in \mathbf{C}_{k}, C_{x} \subseteq f^{-1}\{f(x)\}$, and $\mathbf{D}(x)=$ $\left\{C \cap C_{x}: x \in C \in \mathbf{C}_{k}\right.$ and $\left.B(C) \cap B\left(C_{x}\right)=\varnothing\right\}$. Clearly $\mathbf{D}(x)$ satisfies the condition preceding Theorem 5 and $\operatorname{card}(\mathbf{D}(x))=\binom{m-k}{k}$. Also $\mu(D)=4^{-k}$ for every $D \in \mathbf{D}(x)$. Thus, Theorem 9 follows from Corollary 3 and Theorem 5 with $X_{0}=X$ and $\epsilon=0$.

In practice it may be more useful to formulate Theorems 8 and 9 as follows.
Corollary 10. (i) Under the suppositions of Theorem 8 the probability that $f(x) \neq v$ is $\leqslant p$ if

$$
\begin{equation*}
n \geqslant \frac{\log \binom{m}{k}-\log p}{-\log \left(1--\mu_{f}\right)} \tag{3}
\end{equation*}
$$

(ii) Under the suppositions of Theorem 9 the probability that $f(x) \neq v$ is $\leqslant p$ if

$$
\begin{equation*}
n \geqslant \frac{\log \binom{m-k}{k}-\log p}{-\log \left(1-4^{-k}\right)} \tag{4}
\end{equation*}
$$

Remark 2. We think that Corollary 10 and Theorem 13 (see below) indicate that the algorithm is applicable in some situations (a difficulty is pointed out in Remark 10 at the end of this paper). Although the estimates (3) and (4) depend very much on μ_{f} and k, respectively (since $-\log (1-\alpha) \approx \alpha$ for small α) still for some f it may happen that the true values of n which secure the required p are much smaller than the above estimates.

Let $n(m, p, k)$ be the least integer n which satisfies (4). Some values of $n(m, p, k)$ are given in Table I.

Remark 3. Perhaps the learning neurons in the brain learn in fact k-continuous Boolean (i.e., two-valued) functions f with small k (or functions of some related class). They store a sequence $x_{1}, \ldots, x_{n}, f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ or some information extracted from this sequence (where $x_{i} \in\{0,1\}^{m}$ and m is the number of inputs of the neuron) and then estimate $f(x)$ using the Algorithm with $\mathbf{C}=\mathbf{C}_{k}$ or some related algorithm. It is not clear how the values $f\left(x_{i}\right)$ are taught to the neuron but one can imagine various mechanisms for such self-teaching of the brain. All this suggests studying nets built from k-continuous Boolean functions. For some information on such nets see [3] and [9], but learning nets of this sort have not yet been studied.

Is it so that some neurons in the central nervous system are k-continuous Boolean functions with small k (say $k<10$)? (Neurons usually have hundreds of inputs and probably depend on most of them.) In theory one could try to prove this checking the predictability of the activity of a neuron, from its past activity, applying our algorithm.

Table I

m	λ^{p}	1/20	1/100	1/1000
200	1	29	35	43
	2	200	225	261
	3	1082	1185	1331
	4	5340	5751	6340
	5	25098	26746	29102
	6	114452	121043	130473
	7	511155	537523	575248
500	1	33	38	46
	2	229	254	289
	3	1259	1361	1508
	4	6294	6705	7293
	5	29898	31545	33902
	6	137614	144206	153636
	7	619810	646179	683903
1000	1	35	41	49
	2	250	275	311
	3	1392	1494	1640
	4	7008	7419	8008
	5	33481	35128	37485
	6	154859	161450	170880
	7	700469	726837	764561

Remark 4. It is not clear, although it seems probable, that k-continuous and regular k-continuous functions constitute the natural domain of applications of the algorithm. But those are the only interesting (simple enough) classes of functions related to the algorithm which we know. We shall study them in the following sections of this paper.

Remark 5. There exist other functions (different from k-continuous ones) depending on may variables for which efficient interpolation algorithms are known. It seems that these algorithms are all closely related to linear approximation theory, like the least-squares method, the Monte Carlo methods (see [6, Chapter 12], [15] and [16]), the perceptron learning theorem and equalizing algorithms (see [10] and [11]). Some of them yield small mean square errors rather than uniform approximations like the algorithm of this paper.

Remark 6. Lemma 4 implies the following.

Proposition 11. If the elements $x_{1}, \ldots, x_{n} \in\{0,1\}^{m}$ are chosen at random then, with probability not less than $1-2^{k}\binom{m}{k}\left(1-2^{-k}\right)^{n}$ the set $\left\{x_{1}, \ldots, x_{n}\right\}$ intersects every k-cylinder.

Let $n(m, k)$ be the minimal number n such that there exists a set $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq\{0,1\}^{m}$ intersecting every k-cylinder. Clearly Proposition 11 implies that $n(m, k) \leqslant n$ if $2^{k}\binom{m}{k}\left(1-2^{-k}\right)^{n}<1$. This was proved by Spencer [14, Theorem 2.3.1]. We do not know any sharper estimate of $n(m, k)$ unless $k=2$ or $m-1$. Of course, $n(2,2)=4$, and if $m>2$ then $n(m, 2)$ is the least integer n such that $\binom{n-1}{[n 2]-1} \geqslant m$. McKenzie remarked that this follows from Erdös, Ko, and Rado [4, Theorem 1] (see also [7]), if one uses the following obvious lemma: If M is a 01 -matrix with m columns which are characteristic functions of a collection of m sets such that no two are included in one another, each two intersect and the complements of each two intersect, then the set of rows of M intersects every 2 -cylinder in $\{0,1\}^{m}$. He noticed also that $n(m, m-1)=2^{m-1}$.

Remark 7. For related applications of probability to combinatorics, see [5] and [14]. Another application of Lemma 4 is the following.

Proposition 12. If $f_{i}:\{1, \ldots, m\} \rightarrow\{1, \ldots, k\}$ are functions chosen at random for $i=1, \ldots, n$ then, with probability not less than $1-\binom{m}{k}\left(1-k!/ k^{k}\right)^{n}$, we have
(*) for every set $A \subseteq\{1, \ldots, m\}$ with k elements there is an $i \in\{1, \ldots, n\}$ such that f_{i} restricted to A is one-to-one.
Let $n(m, k)$ be the minimal n such that there exists f_{1}, \ldots, f_{n} as in Proposition 12 satisfying (*). Clearly Proposition 12 implies that $n(m, k) \leqslant n$ if $\binom{m}{k}\left(1-k!/ k^{k}\right)^{n}<1$. Again (as in Remark 6) we do not know any sharper estimate of $n(m, k)$ unless $k=2$. It is easy to check that $n(m, 2)$ is the least integer not less than $\log m / \log 2$.

The following theorem follows from Theorems 6 and 7 in the same way in which Theorems 8 and 9 followed from Corollary 3 and Theorem 5.

Theorem 13. Iff is regular k-continuous, $1 m \geqslant 2 k, \mu$ is defined by (2), and $x_{1}, \ldots, x_{n} \in X$ are chosen at random then with probability not less than

$$
1-4^{k}\binom{m}{2 k}\left(1-4^{-k}\right)^{n}
$$

$f(x)=v$ for every $x \in X$ and every v such that there exists a $C \in \mathbf{C}_{k}$ with $x \in C$ and $f\left(x_{i}\right)=v$ for all $x_{i} \in C \cap\left\{x_{1}, \ldots, x_{n}\right\}$.

Proof. Let, for every $x \in X, \mathbf{D}(x)=\left\{C: x \in C \in \mathbf{C}_{2 k}\right\}$. Hence, for every
$x \in X$ and every $C \in \mathbf{C}_{k}$ with $x \in C$ there exists a $D \in \mathbf{D}(x)$ such that $D \subseteq C \cap f^{-1}\{f(x)\}$. Clearly for every $D \in \mathbf{D}(x), \mu(D) \geqslant 4^{-k}$ and

$$
\operatorname{card}\left(\bigcup_{x \in X} \mathbf{D}(x)\right) \leqslant \operatorname{card}\left(\mathbf{C}_{2 k}\right)=4^{k}\binom{m}{2 k}
$$

Hence, Theorem 13 follows from Theorems 6 and 7 with $X_{0}=X$ and $\epsilon=0$.
Remark 8. The estimate

$$
\begin{equation*}
n \geqslant \frac{\log \binom{m}{2 k}+k \log 4-\log p}{-\log \left(1-4^{-k}\right)} \tag{5}
\end{equation*}
$$

similar to Corollary 10 (ii), which follows from Theorem 13 is not much worse than (4). Let $n(m, k, p)$ be the smallest integer satisfying (5). Some values of $n(m, k, p)$ are given in Table II.

Table II

m	$k \lambda^{p}$	1/20	1/100	1/1000
200	1	50	56	64
	2	369	393	429
	3	2051	2153	2299
	4	10267	10678	11266
	5	48696	50343	52700
	6	223490	230082	239512
	7	1002989	1029357	1067081
500	1	57	62	70
	2	426	451	486
	3	2403	2505	2651
	4	12161	12537	13161
	5	58215	59863	62219
	6	269356	275947	285377
	7	1217777	1244145	1281869
1000	1	61	67	75
	2	469	494	529
	3	2668	2770	2916
	4	13585	13997	14585
	5	65356	67004	69360
	6	303694	310286	319716
	7	1378274	1404643	1442367

4. k-Continuous Functions

k-continuous and regular k-continuous functions are defined prior to Theorem 8 and Theorem 9, respectively. We shall change the notation in this respect that, for any $x \in\{0,1\}^{m}, x_{i}$ will be the i th coordinate of x, thus $x=\left(x_{1}, \ldots, x_{m}\right)$.

If $X \subseteq\{0,1\}^{m}$ and f is a function with domain X we shall say that f depends on the variable x_{i} if there are $x, y \in X$ such that $x_{j}=y_{j}$ for all $j \neq i$ but $f(x) \neq f(y)$.

Our main interest will be in the question on how many variables can a k-continuous or regular k-continuous function depend.

Example. The following function $f:\{0,1\}^{7} \rightarrow\{0,1\}$ is regular 3-continuous

$$
f\left(x_{1}, \ldots, x_{7}\right)= \begin{cases}x_{4} & \text { if } x_{1}=0 \quad \text { and } x_{2}=0 \\ x_{5} & \text { if } x_{1}=0 \quad \text { and } x_{2}=1 \\ x_{6} & \text { if } x_{1}=1 \text { and } x_{3}=0 \\ x_{7} & \text { if } x_{1}=1 \text { and } x_{3}=1\end{cases}
$$

Proposition 14. For every integer $m>1$ there are 2-continuous functions $f: X \rightarrow\{0,1\}$ where $X \subseteq\{0,1\}^{m}$ depending on all m variables.

Proof (due to D. B. Thompson). Let X be the set of all sequences

$$
\underbrace{(0,0, \ldots, 0,1,1, \ldots, 1)}_{i} \underbrace{}_{m-i}
$$

where $i \in\{0,1, \ldots, m\}$, and $f(x) \equiv i(\bmod 2)$. It is easy to see that f is 2 -continuous and depends on all its m variables.

Let $\varphi(k)$ be the maximum number of variables on which a regular k-continuous Boolean (i.e., two-valued) function may depend and $\varphi_{0}(k)$ the maximum m for which there are k-continuous functions $f:\{0,1\}^{m} \rightarrow\{0,1\}$ depending on all m variables.

$$
\text { THEOREM } 15 . \quad 2 k+\binom{2 k}{k} \leqslant \varphi_{0}(k+1) \leqslant \varphi(k+1) \leqslant(2 k+1) 4^{k}
$$

This theorem follows from Propositions 16 and 17 and Theorems 23 and 24. Stronger results are proved in Notes 3 and 6 at the end of this paper. It shows that regular k-continuity is a much stronger condition than k-continiuty.

Proposition 16. If f is a k-continuous function with domain $\{0,1\}^{m}$ then f is regular k-continuous.

Proposition 17. There are $(k+1)$-continuous functions $f:\{0,1\}^{m} \rightarrow\{0,1\}$, where $m=2 k+\binom{2 k}{k}$, depending on all m variables.

Proof. Let $M=K \cup\{A: A \subseteq K, \operatorname{card}(A)=k\}, \quad$ where $\quad \operatorname{card}(K)=2 k$. Hence, $\operatorname{card}(M)=m$. Let $x \in\{0,1\}^{M}$, i.e., $x: M \rightarrow\{0,1\}$. Now we define $f:\{0,1\}^{M} \rightarrow\{0,1\}$ as follows: (1) if card $\{i \in K: x(i)=0\}>k$ then $f(x)=0$; (2) if $\operatorname{card}\{i \in K: x(i)=1\}>k$ then $f(x)=1$; (3) if $A=\{i \in K: x(i)=0\}$ and $\operatorname{card}(A)=k$ then $f(x)=x(A)$. It is not hard to check that f is $(k+1)$ continuous and depends on all m variables.

Problem. We do not know if $\varphi_{0}(k)<\varphi(k)$ for some k.

Proposition 18. A function $f:\{0,1\}^{m} \rightarrow\{0,1\}$ is k-continuous iff f can be represented as a disjunction of conjunctions of variables and negations of variables each conjunction having no more than k terms and also as a conjunction of disjunctions of variables and negations of variables each disjunction having no more than k terms.

Proposition 19. If f_{i} is k_{i}-continuous with domain $X_{i} \subseteq\{0,1\}^{m}$ and range R_{i} for $i=1, \ldots, n$ and g is any function with domain $\mathbf{P}_{i=1}^{n} R_{i}$ then $f(x)=$ $g\left(f_{1}(x), \ldots, f_{n}(x)\right)$ is a $\left(k_{1}+\cdots+k_{n}\right)$-continuous function with domain $\bigcap_{i=1}^{n} X_{i}$.

Proposition 20. If f is a (regular) k-continuous function with domain $X \subseteq\{0,1\}^{m}$ then $g(x)=f(\pi(x)+c)$ is (regular) k-continuous with domain $\pi^{-1}(X-c)$, where π is any permutation of coordinates, + denotes vector addition in $\{0,1\}^{m}$ treated as a vector space over the Galois field GF(2), and c is any vector in $\{0,1\}^{m}$.

Proposition 21. If f and g are regular k-continuous and l-continuous functions respectively with the same domain $X, N \subseteq X, N$ intersects every $(k+l)$-cylinder included in X and $f \upharpoonright N=g \upharpoonright N$ then $f=g$.

Proof. Let $x \in X$. Choose a k-cylinder C_{1} and an l-cylinder C_{2} such that $x \in C_{1} \subseteq X, x \in C_{2} \subseteq X$, and $f \upharpoonright C_{1}$ and $g \upharpoonright C_{2}$ are constants. Since $C_{1} \cap C_{2}$ includes a $(k+l)$-cylinder it contains an element $y \in N$. Since $f(y)=g(y)$ it follows that $f(x)=g(x)$.

Theorem 22. Given a set $X \subseteq\{0,1\}^{m}$ which is a union of k-cylinders such that X includes exactly $d 2 k$-cylinders, and a set R, there are no more than $d^{4^{k} \log \operatorname{card}(R)}$ regular k-continuous functions $f: X \rightarrow R$.

Proof. By Lemma 4 if x_{1}, \ldots, x_{n} are chosen at random in X then with
probability not less than $1-d\left(1-4^{-k}\right)^{n}$ the set $N=\left\{x_{1}, \ldots, x_{n}\right\}$ intersects every $2 k$-cylinder included in X. Hence, if $d\left(1-4^{-k}\right)^{n}<1$, i.e.,

$$
n>\frac{\log d}{-\log \left(1-4^{-k}\right)}
$$

then there exists a set N with n elements at most which intersects every $2 k$-cylinder included in X. Therefore, since $4^{k} \log d>(\log d) /\left(-\log \left(1-4^{-k}\right)\right)$, and by Proposition 21, to define a regular k-continuous function $f: X \rightarrow R$ it is enough to fix the values of f over a set N with no more than $4^{k} \log d$ elements. This can be done in no more than $(\operatorname{card}(R))^{4^{k} \log d}=d^{4^{k_{i}} \log \operatorname{card}(R)}$ ways.
Q.E.D.

Problem. Improve the bound given in Theorem 22 (cf. Theorem 15).
Proving a conjecture of Kuratowski, Calczyńska-Karlowicz [2] found the following lemma.
(6) For every positive integer k there exists a positive integer κ such that if \mathbf{A} and \mathbf{B} are two collections of k-element sets, such that $A \cap B \neq \varnothing$ for every $A \in \mathbf{A}$ and $B \in \mathbf{B}$, then there exists a set M with κ elements at most such that $M \cap A \cap B \neq \varnothing$ for every $A \in \mathbf{A}$ and $B \in \mathbf{B}$.

Theorem 24 proved below is a refinement of (6).
Let $\kappa(k)$ be the smallest κ satisfying (6) and $\varphi(k)$ as defined prior to Theorem 15.

Theorem 23. $\varphi(k)=\kappa(k)$.
Proof. $\varphi(k) \geqslant \kappa(k)$. Let \mathbf{A} and \mathbf{B} be two collections of k-element sets and M a $\kappa(k)$-element set which is minimal such that $M \cap A \cap B \neq \varnothing$ for every $A \in \mathbf{A}$ and $B \in \mathbf{B}$. We define two unions of k-cylinders

$$
\begin{aligned}
& F_{0}=\bigcup_{A \in \mathrm{~A}}\left\{x \in\{0,1\}^{M}: x(j)=0 \text { for all } j \in M \cap A\right\}, \\
& F_{1}=\bigcup_{B \in \mathrm{~B}}\left\{x \in\{0,1\}^{M}: x(j)=1 \text { for all } j \in M \cap B\right\} .
\end{aligned}
$$

It is clear that $F_{0} \cap F_{1}=\varnothing$. We put $X=F_{0} \cup F_{1}$ and define $f: X \rightarrow\{0,1\}$ putting $f^{-1}(0)=F_{0}$ and $f^{-1}(1)=F_{1}$.

Thus, f is regular k-continuous.
To see that f depends on all its $\kappa(k)$ variables let $i \in M$. Hence, since M is minimal there are $A \in \mathbf{A}, B \in \mathbf{B}$ such that $M \cap A \cap B=\{i\}$. Let

$$
x(j)= \begin{cases}0 & \text { for } j \in M \cap A, \\ 1 & \text { for } j \in M-A,\end{cases}
$$

and $y(j)=x(j)$ for $j \neq i$ and $y(i)=1$. Hence, $y(j)=1$ for all $j \in M \cap B$. Thus, $f(x)=0$ and $f(y)=1$ but x and y differ only at the i th coordinate.

Therefore, $\varphi(k) \geqslant \kappa(k)$.
$\varphi(k) \leqslant \kappa(k)$. Let $f: X \rightarrow\{0,1\}$ be regular k-continuous and X be a union of k-cylinders in $\{0,1\}^{\varphi(k)+t}$, and let f depend on $\varphi(k)$ variables $x_{1}, \ldots, x_{甲(k)}$. For each k-cylinder C in $\{0,1\}^{\infty(k)+t}$ we put

$$
\begin{equation*}
F(C)=a \tag{7}
\end{equation*}
$$

where $a: B(C) \rightarrow\{0,1\}$ is such that

$$
C=\left\{x \in\{0,1\}^{甲(k)+t}: x \upharpoonleft B(C)=a\right\}
$$

(hence, a is a function and is a set of k ordered pairs). Let $1-a: B(C) \rightarrow\{0,1\}$ be defined by $(1-a)(i)=1-a(i)$ for all $i \in B(C)$. We put

$$
\begin{aligned}
& \mathbf{A}=\{F(C): C \subseteq X, C \text { is a } k \text {-cylinder, } f(C)=\{0\}\} \\
& \mathbf{B}=\{1-F(C): C \subseteq X, C \text { is a } k \text {-cylinder, } f(C)=\{1\}\} .
\end{aligned}
$$

We have $A \cap B \neq \varnothing$ for each $A \in \mathbf{A}$ and $B \in \mathbf{B}$ since otherwise there would be a k-cylinder $C_{0} \subseteq X$ with $f\left(C_{0}\right)=\{0\}$ and a k-cylinder $C_{1} \subseteq X$ with $f\left(C_{1}\right)=\{1\}$ such that $F\left(C_{0}\right) \cup F\left(C_{1}\right)$ is a function. But then $C_{0} \cap C_{1} \neq \varnothing$, which is a contradiction.

Now we will show that if $M \cap A \cap B \neq \varnothing$ for each $A \in \mathbf{A}$ and $B \in \mathbf{B}$ then for every $i \in\{1, \ldots, \varphi(k)\}$ there is a pair $\langle i, b\rangle$, where $b \in\{0,1\}$, which belongs to M. This will finish the proof since it implies that M has at least $\varphi(k)$ elements and hence $\kappa(k) \geqslant \varphi(k)$.

Since f is k-continuous and depends on x_{i} for every $i \in\{1, \ldots, \varphi(k)\}$ it follows that for each such i there are two disjoint k-cylinders C_{0} and C_{1} such that $i \in B\left(C_{0}\right) \cap B\left(C_{1}\right), F\left(C_{0}\right)(i) \neq F\left(C_{1}\right)(i)$ and $F\left(C_{0}\right)(j)=F\left(C_{1}\right)(j)$ for every $j \in B\left(C_{0}\right) \cap B\left(C_{1}\right)-\{i\}$. Hence, $F\left(C_{0}\right) \cap\left(1-F\left(C_{1}\right)\right)$ is a singleton $\{\langle i, b\rangle\}$ and $\langle i, b\rangle \in M$ since $M \cap F\left(C_{0}\right) \cap\left(1-F\left(C_{1}\right)\right) \neq 0$.
Q.E.D.

Theorem 24. $2 k+\binom{2 k}{k} \leqslant \kappa(k+1) \leqslant(2 k+1) 4^{k}$.
Proof. The first inequality is due to Frances Yao. Her proof is the following. Let K be a set with $\operatorname{card}(K)=2 k$. Let $\mathbf{A}=\{A \cup\{A\}: A \subseteq K$ and $\operatorname{card}(A)=k\}$ and $\mathbf{B}=\{(K-A) \cup\{A\}: A \subseteq K$ and $\operatorname{card}(A)=k\}$. Thus, for each $A \in \mathbf{A}$ and $B \in \mathbf{B}$ we have $\operatorname{card}(A)=\operatorname{card}(B)=k+1$ and $A \cap B \neq \varnothing$. Also it is clear that the minimal set which intersects all intersections $A \cap B$ is

$$
K \cup\{\{A\}: A \subseteq K \text { and } \operatorname{card}(A)=k\}
$$

which has cardinality $2 k+\binom{2 k}{k}$ as desired. (An alternative proof follows from Theorem 23 and Proposition 17 and a stronger inequality from Theorem 17A.)

To prove the second inequality (improved in Note 6 at the end of this paper) we need the following lemma.

Lemma 25. Let $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}$ be k-element sets such that $A_{i} \cap B_{j}=\varnothing$ iff $i=j$. Then

$$
n \leqslant 4^{k}
$$

Proof. Let $n(k, m)$ be the maximal n as above such that A_{i} and B_{i} satisfy the additional condition $\operatorname{card}\left(\bigcup_{i=1}^{n}\left(A_{i} \cup B_{i}\right)\right) \leqslant m$. Thus, $n(k, m) \leqslant\binom{ m}{k}$. We need the following auxiliary facts

$$
\begin{align*}
n(k, m) & \leqslant n(k, m+1), \tag{8}\\
n(k, 2 k) & =\binom{2 k}{k}, \tag{9}\\
n(k, 2(k+l))\binom{2 l}{l} & \leqslant n(k+l, 2(k+l)) . \tag{10}
\end{align*}
$$

(8) and (9) are obvious. (10) is proved as follows. Let $A_{i}, B_{i} \subseteq U$, $\operatorname{card}(U)=2(k+l), \operatorname{card}\left(A_{i}\right)=\operatorname{card}\left(B_{i}\right)=k$ and $A_{i} \cap B_{j}=\varnothing$ iff $i=j$ for $i, j=1, \ldots, n(k, 2(k+l))$. Let $U_{i}=U-\left(A_{i} \cup B_{i}\right)$. Hence, $\operatorname{card}\left(U_{i}\right)=2 l$. Let $C_{r}{ }^{i}$ for $r=1, \ldots,\binom{2 l}{l}$ be the sequence of all subsets of U_{i} having l elements. We put

$$
A_{i r}=A_{i} \cup C_{r}^{i} \quad \text { and } \quad B_{i r}=B_{i} \cup\left(U_{i}-C_{r}^{i}\right) .
$$

Hence, $\operatorname{card}\left(A_{i r}\right)=\operatorname{card}\left(B_{i r}\right)=k+l$ for all i and $r, \operatorname{card}\left(\bigcup\left(A_{i r} \cup B_{i r}\right)\right) \leqslant$ $\operatorname{card}(U)=2(k+l)$ and $A_{i r} \cap B_{j s}=\varnothing$ iff $(i, r)=(j, s)$, and (10) follows.

By (9) and (10)

$$
n(k, 2(k+l)) \leqslant\binom{ 2(k+l)}{k+j} /\binom{2 l}{l}
$$

Since

$$
\lim _{l \rightarrow \infty}\binom{2(k+l)}{k+l} /\binom{2 l}{l}=4^{k}
$$

and by (8) we get Lemma 25.
Now we conclude the proof of Theorem 24. Let A and B be collections of sets such that for every $A \in \mathbf{A}$ and $B \in \mathbf{B} \operatorname{card}(A) \leqslant k+1, \operatorname{card}(B) \leqslant k+1$ and $A \cap B \neq \varnothing$. We can assume without loss of generality that for every $u \in U$, where $U=\bigcup_{A \in \mathbf{A}, B \in \mathbf{B}}(A \cup B)$, there are $A \in \mathbf{A}$ and $B \in \mathbf{B}$ such that
$A \cap B=\{u\}$. Thus, the proof of Theorem 24 will be completed if we show

$$
\begin{equation*}
\operatorname{card}(U) \leqslant(2 k+1) 4^{k} \tag{11}
\end{equation*}
$$

To show this let a set $F \subseteq U$ be called free if for every $u \in F$ there are $A \in \mathbf{A}$ and $B \in \mathbf{B}$ such that $A \cap B=\{u\}$ and $(A \cup B) \cap F=\{u\}$. We shall prove first that
(12) U is a union of no more than $2 k+1$ disjoint free sets.

We shall produce a sequence $F_{1}, \ldots, F_{2 k+1}$ of disjoint free sets covering U by assigning one by one the elements of U to the F_{i}. Given $u \in U$ not yet assigned let $\{u\}=A \cap B$ for some $A \in \mathbf{A}$ and $B \in \mathbf{B}$. Thus, $\operatorname{card}(A \cup B-\{u\}) \leqslant 2 k$. We assign u to any of the sets F_{i} which is still disjoint with $A \cup B-\{u\}$ (such an F_{i} exists since there are $2 k+1$ of them). If the original set F_{i} was free then the extended set F_{i} is still free. Thus, (12) is proved.
(13) A free set has no more than 4^{k} elements.

Let F be a free set and for every $u \in F$ and let $A_{u} \in \mathbf{A}$ and $B_{u} \in \mathbf{B}$ be such that $A_{u} \cap B_{u}=\{u\}$ and $\left(A_{u} \cup B_{u}\right) \cap F=\{u\}$. The systems $A_{u}-\{u\}$, $B_{u}-\{u\}$, where $u \in F$ satisfy the assumptions of Lemma 25 (except possibly that some of these sets may have less than k elements, but then they could be extended so to have exactly k). Hence, $\operatorname{card}(F) \leqslant 4^{k}$ and (13) follow.

By (12) and (13) we get (11).
Q.E.D.

Remark 9. Since $\binom{2 k}{k} \sim 4^{k} /(\pi k)^{1 / 2}$ it follows that the estimates of Theorem 24 are not too bad. Still in view of the next remark one would like to know more.

Remark 10. What is the best way to organize the computation of a k-continuous function f known on a sufficiently large set N ? Sometimes it may be better to store the pairs $\langle F(C), b(C)\rangle$ (see formula (7)), where $f(C \cap X)=\{b(C)\}$, for a minimal set of k-cylinders C covering the domain X of f and such that $f(C \cap X)=\{0\}$ or $f(C \cap X)=\{1\}$. Then given $x \in X$, at which we want to evaluate f, we look for such $F(C)$ in this memory which satisfies $F(C) \subseteq x$, and the corresponding $b(C)$ is $f(x)$. But there may be large irredundant coverings of X with k-cylinders while very small ones exist too. How to find a small one (if it exists)? (See [1] for material somewhat related to this problem).

This question is important in view of the following difficulty of applying the algorithm. Suppose that we have a table of $f \upharpoonright N$ for $N \subseteq\{0,1\}^{200}$, $\operatorname{card}(N)=26,746$ and f is 2 -valued and 5-continuous. Given $x \in\{0,1\}^{200}$, to apply the algorithm for estimating $f(x)$, we must find a 5 -cylinder C
containing x such that $f \upharpoonright(N \cap C)$ is a constant. But there are $\binom{200}{5}=2,535,650,0405$-cylinders containing x, and, hence, the search is rather prohibitive. A remedy is proposed in A. Ehrenfeucht and Jan Mycielski, Organisation of memory, Proc. Nat. Acad. Sci. USA, (1973).

Remark 11. In view of Theorem 22 and Remark 10 it would be interesting to estimate the maximum number of k-cylinders in a minimal covering of $\{0,1\}^{m}$ or of any union of k-cylinders in $\{0,1\}^{m}$. In this respect we have the following observations made by D. B. Thompson and the referee. (1) For $m>1,\{0,1\}^{m}$ has a minimal covering with $2 m$ 2-cylinders $\left\{x: x_{1}=x_{m}=v\right\}$ and $\left\{x: x_{i}=v, \quad x_{i+1}=1-v\right\}$, where $v=0,1 \quad$ and $i=1, \ldots, m-1$. (2) $\{0,1\}^{m}-\{(0, \ldots, 0)\}$ has a minimal covering with m l-cylinders and, if m is even, with $\frac{3}{2} m$ 2-cylinders $\left\{x: x_{i}=x_{i+m / 2}=1\right\}$ and $\left\{x: x_{i}=1, x_{i+m / 2}=0\right\}$, where $i=1, \ldots, m$ and + denotes addition $\bmod m$. (3) $\left\{x \in\{0,1\}^{m}\right.$: $\left.x_{1}+\cdots+x_{m} \geqslant k\right\}$ has minimal covering with $\binom{m}{k} k$-cylinders.

Note 1. J. H. Spencer (see [5]) proved the following theorem related to Lemma 4.

Theorem. There exists a set $N \subseteq X$ such that $N \cap D \neq \varnothing$ for every $D \in \mathbf{D}$ and $\operatorname{card}(N)$ is the least integer not less than

$$
\frac{\log d+1+\log \left(-\log \left(1-\mu_{0}\right)\right)}{-\log \left(1-\mu_{0}\right)}
$$

This theorem permits to improve some estimates following Propositions 11 and 12. But his construction of this set N is not random as in Lemma 4, and, hence, it does not permit to improve our results, say Theorem 9.

Note 2. A matrix similar to the 01-matrix in the proof of McKenzie in Remark 6 was used by J. H. Spencer, Minimal completely separating systems, J. Combinatorial Theory 8(1970), 446-447.

Note 3. Proposition 17 and the first inequality of Theorems 15 and 24 can be improved as follows.

Theorem 17A. There exist $(k+2)$-continuous functions $f:\{0,1\}^{m} \rightarrow\{0,1\}$, where $m=2 k+4\binom{2 k}{k}$, depending on all m variables.

Proof. Let K be a set with $\operatorname{card}(K)=2 k$ and $f_{0}:\{0,1\}^{4} \rightarrow\{0,1\}$ be a 2-continuous function depending on all 4 variables (e.g. $f_{0}(x, y, u, v)=0$ if $x=y=0$ or $u=v=0$ and $f_{0}(x, y, u, v)=1$ if $\left.1 \in\{x, y\} \cap\{u, v\}\right)$. We put

$$
M=K \cup(\{A: A \subseteq K \text { and } \operatorname{card}(A)=k\} \times\{0,1,2,3\})
$$

Hence, $\operatorname{card}(M)=m$. Let us define $f:\{0,1\}^{M} \rightarrow\{0,1\}$ as follows: If
$x \in\{0,1\}^{M}$ then (1) if $\operatorname{card}(\{i \in K: x(i)=0\})>k$ then $f(x)=0$; (2) if $\operatorname{card}(\{i \in K: x(i)=1\})>k$ then $f(x)=1$; (3) if $A_{x}=\{i \in K: x(i)=0\}$ and $\operatorname{card}\left(A_{x}\right)=k$ then let $y(j)=x\left(\left\langle A_{x}, j\right\rangle\right)$ for $j=0,1,2,3$ and let $f(x)=f_{0}(y)$.

To see that f thus defined is $(k+2)$-continuous notice that if case (1) or (2) applies then there exists a $(k+1)$-cylinder C with $x \in C$ and $f \upharpoonright C$ is a constant. If case (3) applies and $f_{0}(y)=0$ and $C_{y} \subseteq\{0,1\}^{4}$ is a 2-cylinder with $y \in C_{y}$ and $f_{0} \upharpoonright C_{y}$ a constant, then the $(k+2)$-cylinder

$$
C=\left\{z \in\{0,1\}^{M}: z(i)=x(i) \text { for } i \in A_{x} \cup\left(\left\{A_{x}\right\} \times B\left(C_{y}\right)\right)\right\}
$$

contains x and $f \upharpoonright C$ is a constant. While if $f_{0}(y)=1$ and C_{y} is as above then the ($k+2$)-cylinder

$$
C=\left\{z \in\{0,1\}^{M}: z(i)=x(i) \text { for } i \in\left(K-A_{x}\right) \cup\left(\left\{A_{x}\right\} \times B\left(C_{y}\right)\right)\right\}
$$

also contains x and $f \upharpoonright C$ is a constant. Thus, f is $(k+2)$-continuous. It is also visible that f depends on all m variables.
Q.E.D.

Note 4. An example of regular k-continuous functions depending on $3 \cdot 2^{k-1}-2$ variables.

Consider the following partitions of a square into $3 \cdot 2^{k-1}-2$ squares.

Let \mathbf{A}_{k} be the collection of sets of squares of the k th picture whose interiors can be intersected by one horizontal line and \mathbf{B}_{k} be the collection of sets of squares of the k th picture whose interiors can be intersected by one vertical line. Now if $M \cap A \cap B \neq \varnothing$ for all $A \in \mathbf{A}_{k}$ and $B \in \mathbf{B}_{k}$ then M consists of all the squares of the k th picture. The regular k-continuous functions are constructed from \mathbf{A}_{k} and \mathbf{B}_{k} as in the first part of the proof of Theorem 23.

Note 5. We give an example of a regular 3-continuous function $f: X \rightarrow\{0,1\}$, where $X \subseteq\{0,1\}^{8}$, such that f can not be extended to a 3-continuous function $f^{*}:\{0,1\}^{8} \rightarrow\{0,1\}$. Let + denote addition mod 8. We define two unions of 3 -cylinders

$$
\begin{aligned}
& X_{0}=\left\{x \in\{0,1\}^{8}: \exists i\left[\left(x_{i}, x_{i+1}, x_{i+2}\right)=(0,0,0)\right]\right\} \\
& X_{1}=\left\{x \in\{0,1\}^{8}: \exists i\left[\left(x_{i}, x_{i+2}, x_{i+5}\right)=(1,1,1)\right]\right\}
\end{aligned}
$$

We put $X=X_{0} \cup X_{1}$ and, since $X_{0} \cap X_{1}=\varnothing$, we can define f putting $f^{-1}(0)=X_{0}, f^{-1}(1)=X_{1}$. It is easy to check that every 3-cylinder containing the point ($0,0,1,1,0,0,1,1$) intersects both X_{0} and X_{1}. Hence, no f^{*} can exist.

Problem. Under what conditions can a regular k-continuous function with domain included in $\{0,1\}^{m}$ be extended to a k-continuous function over $\{0,1\}^{m}$?

Note 6 (added on September 20, 1973). The upper estimate of Theorems 15 and 24 can be improved as follows

$$
\varphi(k+1) \leqslant(2 k+1)\binom{2 k}{k}
$$

This follows from the following refinement of Lemma 25 which itself follows from Theorem 2 of B. Bollobás, On generalised graphs, Acta Math. Acad. Sci. Hung. 16 (1965), 447-452.

Lemma 25A. If $\operatorname{card}\left(A_{i}\right)=a, \operatorname{card}\left(B_{i}\right)=b$ for $i=1, \ldots, n$ and $A_{i} \cap B_{j}=\varnothing$ iff $i=j$ then

$$
n \leqslant\binom{ a+b}{a}
$$

The following elegant proof was given by G. O. H. Katona. Let

$$
S=\bigcup_{i=1}^{n}\left(A_{i} \cup B_{i}\right)
$$

and $s=\operatorname{card}(S)$. For every linear ordering $<$ of S there exists at most one i such that for every $x \in A_{i}, y \in B_{i}$ we have $x<y$. In fact if there was another such index, say j, then there are $x^{\prime} \in A_{j} \cap B_{i}$ and $y^{\prime} \in B_{j} \cap A_{i}$ and $x^{\prime}<y^{\prime}$ is absurd. For every i there are exactly

$$
\binom{s}{a+b} a!b!(s-a-b)!
$$

orders $<$ of S such that $x<y$ for all $x \in A_{i}, y \in B_{i}$. There are s ! orders $<$ of S. Hence

$$
n\binom{s}{a+b} a!b!(s-a-b)!\leqslant s!
$$

which implies Lemma 25A.

Acknowledgments

We are indebted to R. McKenzie, W. Taylor, and S. M. Ulam for many discussions concerning the subject of this paper. In particular the idea of the Algorithm is partly due to Taylor. The first part of Theorem 24 is due to F. Yao.

Theorem 9 was announced in [12].

References

1. A. ADÁm, Truth functions and the problem of their realization by two terminal graphs, Budapest, 1968.
2. M. Calczyńska-Karlowicz, Theorem on families of finite sets, Bull. Acad. Polon. Sci. Ser. Math. Astron. Phys. 12 (1964), 87-89.
3. A. Ehrenfeucht, Practical decidability, University of Colorado, Dept. of Computer Science, Technical Report, 1972.
4. P. Erdös, Chao Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 12 (1961), 313-320.
5. P. Erdös and J. H. Spencer, Probabilistic methods in combinatorics, monograph to appear.
6. J. M. Hammersley and D. C. Handscomb, "Monte Carlo Methods," London, 1964.
7. G. O. H. Katona, A simple proof of the Erdös-Chao Ko-Rado theorem, J. Combinatorial Theory (B) 13 (1972), 183-184.
8. A. N. Kolmogorov and V. M. Tifomirov, є-entropy and є-capacity in function spaces, Uspehi Mat. Nauk 14 (1959), 3-86; Amer. Math. Soc. Transl. 17 (1961), 277-364.
9. R. McKenzie, J. Mycielsisi, and D. Thompson, On Boolean functions and connected sets, Math. Systems Theory 5 (1971), 259-270.
10. M. Minsky and S. Papert, Perceptrons, an introduction to computational geometry, MIT, 1969.
11. J. Mycielski, review of [10], Bull. Amer. Math. Soc. 78 (1972), 12-15.
12. J. Mycielski, Monte Carlo interpolation of Boolean functions, Notices Amer. Math. Soc. 19 (1972), A-594.
13. L. PUKÁNSZKy and A. Renyi, On approximation of measurable functions, Publ. Math. Debrecen 2 (1951), 146-149.
14. J. H. Spencer, Probabilistic Methods in Combinatorial Theory, Thesis, Harvard, 1970.
15. T. Tsuda and H. Matsumoto, A note on linear extrapolation of multivariable functions by the Monte Carlo method, J. ACM 13 (1966), 143-150.
16. T. Tsuda and Kozo Ichida, Non linear interpolation of multivariable functions by the Monte Carlo method, J. ACM 17 (1970), 420-425.

[^0]: * Supported by NSF Grant No. GJ-660.
 ${ }^{\dagger}$ Supported in part by NSF Grant No. GP-19405.

