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1. INTRODUCTION

Let X be a set and f a bounded real valued function over X. Let N C X
be a finite set and suppose that f restricted to N (in symbols f ~ N) is known.
We will define an algorithm to estimate f(x) for any x E X. Let a collection C
of subsets of X be given such that C covers X.

For any bounded nonempty set S of real numbers, mid S = t(sup S + infS)
and diam S = sup S - inf S.

ALGORITHM. Given x E X we choose C E C such that x E C, C n N 01= 0
and diamf(C n N) is small and we estimate f(x) as midf(C n N).

This a familiar procedure if X is a metric space, f is continuous, and all
sets C E C have small diameters. But we are interested, e.g. in the case
X = [0, 1J30. In this case every covering C of X with sets of diameters ~1/n

contains more than n30 sets (in other words the entropy of X is high, see [8})
and the algorithm will not work unless N has at least n30 elements (otherwise
N could not intersect all sets of a subcovering of C). Thus, our assumption
thatf ~ N is known entails the storage of an enormous amount of information.
It is the purpose of this paper to discuss stronger suppositions on f and C
which imply that the algorithm works and allow for smaller C and N.
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In our case it is more natural to assume a probability measure f' over X
and "small measure" will play the role of "small diameters" of the sets in C.

This setting suggests other algorithms related to statistical estimation
procedures, e.g. choose C E C with x E e such that the estimated variance
off over e is small. Then estimate j(x) as the estimated mean off over C.
One could also think of algorithms using several (or all) e E C with x E e
and estimate j(x) as some weighted mean of the estimated means off over
the C's (weights could be functions of the estimated variances off over the
e's). (See Remark 5 in Section 3 for some references related to such ideas;
see also [13] for Stone-Weierstrass-type approximations to measurable
functions.)

But in this paper we will consider only the simple algorithm stated at the
beginning. In Sections 2 and 3 we prove some theorems about it. The
remaining Section 4 is a study of some finite functions which we call k-con
tinuous and for which the algorithm is efficient.

Our motivation for this work were attempts to imagine a mechanism
having certain properties of the brain in particular its learning and recognition
ability. In Section 3, Remark 3, we state a conjecture on the learning mecha
nism of the brain. This conjecture says that learning neurons use an inter
polation algorithm as above.

2. GENERAL THEOREMS

Let E ;:? 0 and let 1; be the closed interval [t - E, t + E]; in particular
n= {t}.

LEMMA 1. If A n j -1(1/(11)) =F 0 then

Ij(x) - midj(A)1 ~ E + idiamj(A).

Proof Choose yEA nj-l(li(I1))' Then

Ij(x) - midj(A)1 ~ fj(x) - j(Y)1 + Ij(y) - midj(A)f

~ E + idiamj(A). Q.E.D.

Let f' be a probability measure over X, and let f and all e E C be f'-mea
surable.

Let the sequence Xl'"'' x n , X E X be choosen at random. We put
N = {Xl'"'' xn }. Thus, N is a random variable over the probability measure
space <xn, f'n).

Let K be a relation over, i.e., a subset of, the space X n X IRn X X X C.
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P(f, C, K, n, e) = Probability {C n N nrl(I;(iJJl) =1= 0 for all C E C

such that (Xl'"'' Xn ,f(Xl)"'" f(xn), X, C) E K}.

By Lemma 1 we immediately get the following.

THEOREM 2. With probability not less than P(f, C, K, n, e) the inequality

If(x) - midf(C n N)I <; e + tdiamf(C n N)

is true for all C E C with (Xl"'" Xn ,f(XI),... ,f(Xn), X, C) E K.

(1)

This theorem is still too general to have practical importance since P may
be close to 1 by the mere fact that the probability of the existence of any
C E C such that (Xl"'" Xn ,f(XI)'''',f(Xn), X, C) E K is very small. On the
other hand, one may have some K's free from this defect. In fact the only K
considered in this paper is as follows (... , X, C) E K iff X E C. Thus, since C
covers X, the above objection does not apply. (It is possible however
that other K's are interesting, especially K's involving a condition
card(C n N) ~ s.) Let

Po(f, C, n, e) = Probability {C n N nr\I;(iJJ») =1= 0

for all C E C such that X E C}.

By Theorem 2 (or directly from Lemma 1) we get the following information
on the algorithm.

COROLLARY 3. With probability not less than Po(f, C, n, e) the inequality
(1) is true for every C E C with X E C.

The following basic Lemma will be used in our estimates of Po.
Let D be a finite collection of ft-measurable subsets of X. We put

d = card(D)

and

fto = min{ft(D): DE D}.

LEMMA 4. The probability that N n D =1= 0 for every D E D is not less
then

Proof Let seN) be the number of sets D ED which are not intersected
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by N. Clearly the expected value of seN) is :::;;;d(1 - }Lo)n. Since seN) = 0 or
seN) ~ 1; therefore, the probability that seN) = 0 is ~l - d(1 - }Lo)n.

Q.E.D.

Now let XoC X be }L-measurable and, for every x E Xo, let D(x) be a
collection of }L-measurable subsets of X such that for every C E C with x E C
there exists aD ED(x) with DeC nt-l (I;(I<»' We put

do = max{card(D(x»: x EXo}

and

}Lo = inf{}L(D): D ED(x), x EXo}.

Proof. Clearly

Po(f, C, n, e) ~ Probability{x E Xo and N n D =1= 0 for every DE D(x)}

~ }L(Xo)(1 - do(1 - }Lo)n),

the last inequality following from Lemma 4. Q.E.D.

In the next section we shall consider a more concrete situation, with e = 0,
and define D(x) so that Corollary 3 and Theorem 5 will yield interesting
estimates.

Now let

Qo(f, C, n, e) = Probability {C n N n rl(J;«£» =1= 0 for all x E X

and all C E C with x E C}.

The following theorem is analogous to Corollary 3 (a similar analog of
Theorem 2 would be also possible) and follows immediately from Lemma 1.

THEOREM 6. With probability not less than Qo(f, C, n, e) the inequality (1)
is true for all x E X and all C E C with x E C.

Now let D(x) and}Lo be as in Theorem 5. We put

dl = card (U D(x»).
(£EX

The proof is similar to that of Theorem 5.
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3. INTERPOLATION OVER to, l}m

to, l}m denotes the set of all sequences of O's and 1's of length m. Let
k :::;;;m.

A k-cylinder in to, l}m is any set C ~ to, l}m which is of the form

where 1 ~ i l < ... < ik ~ m and (e l , ... , Ck) E to, l}k. We put also B(C) =
til ,... , ik}; Ck denotes the family of all k-cylinders.

Let f be a function with domain X Gto, l}m and I-' a probability measure
over X. We shall say thatfis k-continuous if X can be covered with a collec
tion C of k-cylinders such that n (C n X) is a constant for every C E C.
(See Section 4 for examples of such functions.)

We put

1-'1 = min{I-'(C nf-l{f(x)}): C E Ck and x E C n X}.

THEOREM 8. IfXl, ... , Xn , X E X are chosen at random then, with probability
not less than I - C:)O - I-',)n,

f(x) = v

for every C and v such that X E C E Ck andf(xi) = vfor all Xi E C n {Xl '00" x n}.

Proof For all x E X we put D(x) = {C nf-l{f(x)}: x E C E Ck }. Then
card(D(x» :::;;; ('!:). Hence, Theorem 8 follows from Corollary 3 and Theo
rem 5 for Xo = X and € = o.

Remark 1. Although Theorem 8 is valid without any assumptions on J,
it is more interesting for k-continuousl's since for suchl's there are C E Ck

with x E C and f~ C being a constant. Moreover, the probability that
C n N =F 0 for any such C may be large.

fwill be called regular k-continuous if, for every r in the range ofJ, f-l{r}
is a union of k-cylinders. (See Section 4 for examples of such functions.)
Let I-' be the probability measure over X defined by

1-'( Y) = card(Y)jcard(X), for all Y~ X. (2)

THEOREM 9. Iff is regular k-eontinuous, I-' is defined by (2), C and v are
as in Theorem 8 and m ):: 2k then f(x) = v with probability not less than
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(3)

(4)

Proof For every x E X let x E Cx E Ck , Cx Cf-I{f(X)}, and D(x) =
{C n Cx : x E C E Ck and B(C) n B(Cx) = 0}. Clearly D(x) satisfies the
condition preceding Theorem 5 and card(D(x)) = (mkk). Also ft(D) = 4-k

for every D E D(x). Thus, Theorem 9 follows from Corollary 3 and Theo
rem 5 with Xo = X and E = 0.

In practice it may be more useful to formulate Theorems 8 and 9 as follows.

COROLLARY 10. (i) Under the suppositions of Theorem 8 the probability
that f(x) =F v is ~p if

log ( ~) - log p
n ?o --=---;:,---~

-log(l - ftf)

(ii) Under the suppositions of Theorem 9 the probability that f(x) =F v
is ~p if

log (m ---;; k) _ logp

n ?o -log(l _ 4-k)

Remark 2. We think that Corollary 10 and Theorem 13 (see below)
indicate that the algorithm is applicable in some situations (a difficulty is
pointed out in Remark 10 at the end of this paper). Although the estimates
(3) and (4) depend very much on ftf and k, respectively (since -log(l- ex) ~ ex
for small ex) still for some f it may happen that the true values of n which
secure the required p are much smaller than the above estimates.

Let n(m,p, k) be the least integer n which satisfies (4). Some values of
n(m, p, k) are given in Table I.

Remark 3. Perhaps the learning neurons in the brain learn in fact
k-continuous Boolean (i.e., two-valued) functionsfwith small k (or functions
of some related class). They store a sequence Xl"'" Xn , f(Xl)"'" f(xn ) or
some information extracted from this sequence (where Xi E {a, l}m and m
is the number of inputs of the neuron) and then estimate f(x) using the
Algorithm with C = Ck or some related algorithm. It is not clear how the
valuesf(xi) are taught to the neuron but one can imagine various mechanisms
for such self-teaching of the brain. All this suggests studying nets built
from k-continuous Boolean functions. For some information on such nets
see [3] and [9], but learning nets of this sort have not yet been studied.

Is it so that some neurons in the central nervous system are k-continuous
Boolean functions with small k (say k < 1O)? (Neurons usually have
hundreds of inputs and probably depend on most of them.) In theory one
could try to prove this checking the predictability of the activity of a neuron,
from its past activity, applying our algorithm.
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m

200

500

1000

EHRENFEUCHT AND MYCIELSKI

Table I

~ 1/20 1/100 1/1000

1 29 35 43
2 200 225 261
3 1082 1185 1331
4 5340 5751 6340
5 25098 26746 29102
6 114452 121043 130473
7 511155 537523 575248

1 33 38 46
2 229 254 289
3 1259 1361 1508
4 6294 6705 7293
5 29898 31545 33902
6 137614 144206 153636
7 619810 646179 683903

1 35 41 49
2 250 275 311
3 1392 1494 1640
4 7008 7419 8008
5 33481 35128 37485
6 154859 161450 170880
7 700469 726837 764561

Remark 4. It is not clear, although it seems probable, that k-continuous
and regular k-continuous functions constitute the natural domain of applica
tions of the algorithm. But those are the only interesting (simple enough)
classes of functions related to the algorithm which we know. We shall study
them in the following sections of this paper.

Remark 5. There exist other functions (different from k-continuous ones)
depending on may variables for which efficient interpolation algorithms
are known. It seems that these algorithms are all closely related to linear
approximation theory, like the least-squares method, the Monte Carlo
methods (see [6, Chapter 12], [15] and [16D, the perceptron learning theorem
and equalizing algorithms (see [10] and [11 D. Some of them yield small mean
square errors rather than uniform approximations like the algorithm of this
paper.

Remark 6. Lemma 4 implies the following.
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PROPOSITION 11. If the elements Xl"'" Xn E {O, I}m are chosen at random
then, with probability not less than 1 - 2k(':)(1 - 2-k)n the set {Xl"'" Xn}
intersects every k-cylinder.

Let n(m, k) be the minimal number n such that there exists a set
{Xl"'" Xn} k {O, I}m intersecting every k-cylinder. Clearly Proposition 11
implies that n(m, k) ~ n if 2k('::)(l - 2-k)n < 1. This was proved by
Spencer [14, Theorem 2.3.1]. We do not know any sharper estimate of
n(m, k) unless k = 2 or m - 1. Of course, n(2,2) = 4, and if m > 2 then
n(m, 2) is the least integer n such that ([ni2]~J ~ m. McKenzie remarked
that this follows from Erdos, Ko, and Rado [4, Theorem 1] (see also [7]),
if one uses the following obvious lemma: If M is a Ol-matrix with m columns
which are characteristic functions of a collection of m sets such that no two
are included in one another, each two intersect and the complements of each
two intersect, then the set of rows of M intersects every 2-cylinder in {O, l}m.
He noticed also that n(m, m - 1) = 2m - I .

Remark 7. For related applications of probability to combinatorics, see
[5] and [14]. Another application of Lemma 4 is the following.

PROPOSITION 12. Iffi: {I, ..., m} ---->- {I,... , k} are functions chosen at random
for i = 1,..., n then, with probability not less than 1 - (':)(1 - k!/kk)n, we
have

(*) for every set A k {I,..., m} with k elements there is an i E {I,... , n}
such that j~ restricted to A is one-to-one.

Let n(m, k) be the minimal n such that there existsfJ. ,...,j~ as in Proposi
tion 12 satisfying (*). Clearly Proposition 12 implies that n(m, k) ~ n if
('::)(1 - k!/kk)n < 1. Again (as in Remark 6) we do not know any sharper
estimate of n(m, k) unless k = 2. It is easy to check that n(m, 2) is the least
integer not less than log m/log 2.

The following theorem follows from Theorems 6 and 7 in the same way
in which Theorems 8 and 9 followed from Corollary 3 and Theorem 5.

THEOREM 13. Iffis regular k-continuous, 1m ~ 2k, f' is defined by (2), and
Xl"'" X n E X are chosen at random then with probability not less than

j(X) = v for every X E X and every v such that there exists aCE Ck with
X E C and f(Xi) = v for all Xi E C (') {Xl"'" xn}.

Proof. Let, for every X E X, D(x) = {C: X E C E C2k}. Hence, for every
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X E X and every C E Ck with x E C there exists a DE D(x) such that
D ~ C nf-l{f(x)}. Clearly for every D E D(x), fL(D) ~ 4-k and

card (U D(x)) :'( card(C2k) = 4k
(; ).

XEX

Hence, Theorem 13 follows from Theorems 6 and 7 with Xo = X and E = O.

Remark 8. The estimate

log (;) + k log 4 - log P
(5)n>:;;-- -log(1 - 4-k) ,

similar to Corollary 10 (ii), which follows from Theorem 13 is not much
worse than (4). Let n(m, k, p) be the smallest integer satisfying (5). Some
values of n(m, k, p) are given in Table II.

Table II

m k".!:. 1/20 1/100 1/1000

1 50 56 64
2 369 393 429
3 2051 2153 2299

200 4 10267 10678 11266
5 48696 50343 52700
6 223490 230082 239512
7 1002989 1029357 1067081

1 57 62 70
2 426 451 486
3 2403 2505 2651

500 4 12161 12537 13161
5 58215 59863 62219
6 269356 275947 285377
7 1217777 1244145 1281869

1 61 67 75
2 469 494 529
3 2668 2770 2916

1000 4 13585 13997 14585
5 65356 67004 69360
6 303694 310286 319716
7 1378274 1404643 1442367
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k-continuous and regular k-continuous functions are defined prior to
Theorem 8 and Theorem 9, respectively. We shall change the notation in
this respect that, for any x E {O, l}rn, Xi will be the ith coordinate of x, thus
X = (Xl"'" x m).

If X C {O, l}rn andfis a function with domain X we shall say thatfdepends
on the variable Xi if there are x, y E X such that Xj = Yi for all j #- i but
f(x) #- fey).

Our main interest will be in the question on how many variables can a
k-continuous or regular k-continuous function depend.

EXAMPLE. The following function f: {O, 1r -+ {O, I} is regular 3-continu
ous

r
if

Xl = ° and X 2 = 0,

f(XI , ... , x7) = X s if
Xl = ° and X 2 = 1,

X 6 if Xl = 1 and X 3 = 0,
X 7 if Xl = 1 and X 3 = 1.

PROPOSITION 14. For every integer m > I there are 2-continuous functions
f: X -+ {O, I} where XC {O, I}rn depending on all m variables.

Proof (due to D. B. Thompson). Let X be the set of all sequences

(0,0,...,0, 1, 1,... , 1),
----.....-

m - i

where i E {O, I, ..., m}, and f(x) == i (mod 2). It is easy to see that f is 2-con
tinuous and depends on all its m variables.

Let cp(k) be the maximum number of variables on which a regular k-con
tinuous Boolean (i.e., two-valued) function may depend and CPo(k) the maxi
mum m for which there are k-continuous functions f: {O, l}rn -+ {O, I}
depending on all m variables.

THEOREM 15. 2k + (2:> ~ cpo(k + 1) ~ cp(k + I) ~ (2k + I) 4k
•

This theorem follows from Propositions 16 and 17 and Theorems 23 and
24. Stronger results are proved in Notes 3 and 6 at the end of this paper. It
shows that regular k-continuity is a much stronger condition than
k-continiuty.

PROPOSITION 16. Iff is a k-continuous function with domain {O, I}m then f
is regular k-continuous.
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PROPOSITION 17. There are (k + I)-continuousfunctionsf: {a, l}m - {a, I},
where m = 2k + (2f), depending on all m variables.

Proof Let M = K v {A: A C. K, card(A) = k}, where card(K) = 2k.
Hence, card(M) = m. Let x E {a, I}M, i.e., x: M - {a, I}. Now we define
f: {a, I}M - {a, I} as follows: (1) if card{i E K: x(i) = o} > k then f(x) = 0;
(2) if card{i E K : x(i) = I} > k then f(x) = 1; (3) if A = {i E K: x(i) = o}
and card(A) = k thenf(x) = x(A). It is not hard to check thatfis (k + 1)
continuous and depends on all m variables.

Problem. We do not know if gJo(k) < gJ(k) for some k.

PROPOSITION 18. A function f: {a, l}m - {a, I} is k-continuous iff f can
be represented as a disjunction of conjunctions of variables and negations of
variables each conjunction having no more than k terms and also as a conjunc
tion of disjunctions of variables and negations of variables each disjunction
having no more than k terms.

PROPOSITION 19. Iffi is krcontinuous with domain Xi C. {a, l}m and range
Ri for i = 1,... , nand g is any function with domain P:=l Ri then f(x) =
g(fJ.(x), ... ,fn(x» is a (k1 + ... + kn)-continuous function with domain n~l Xi .

PROPOSITION 20. If f is a (regular) k-continuous function with domain
Xc. {a, l}m then g(x) = f(TT(X) + c) is (regular) k-continuous with domain
TT-1(X - c), where TT is any permutation of coordinates, + denotes vector
addition in {a, l}m treated as a vector space over the Galois field GF(2), and c
is any vector in {a, l}m.

PROPOSITION 21. If f and g are regular k-continuous and I-continuous
functions respectively with the same domain X, N C. X, N intersects every
(k + I)-cylinder included in X andf~ N = g ~ N then f = g.

Proof Let x E X. Choose a k-cylinder C1 and an I-cylinder C2 such that
x E C1 C. X, X E C2 C. X, and f~ C1 and g ~ C2 are constants. Since C1 n C2

includes a (k + I)-cylinder it contains an element YEN. Since f(y) = g(y)
it follows that f(x) = g(x).

THEOREM 22. Given a set Xc. {a, I}m which is a union of k-cylinders such
that X includes exactly d 2k-cylinders, and a set R, there are no more than
d4klog Card(R) regular k-continuous functions f: X - R.

Proof By Lemma 4 if Xl"'" Xn are chosen at random in X then with
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probability not less than 1 - d(1 - 4-k)n the set N = {Xl"'" x n} intersects
every 2k-cylinder included in X. Hence, if d(l - 4-k )n < 1, i.e.,

logd
n > -log(1 _ 4-k) ,

then there exists a set N with n elements at most which intersects every
2k-cylinder included in X. Therefore, since 4k log d > (log d)/(-log(1 - 4-k )),

and by Proposition 21, to define a regular k-continuous function f: X ----+ R
it is enough to fix the values of f over a set N with no more than 4k log d
elements. This can be done in no more than (card(R))4k

log a = d4k1og Card(R)

ways. Q.E.D.

Problem. Improve the bound given in Theorem 22 (cf. Theorem 15).
Proving a conjecture of Kuratowski, Calczynska-Karlowicz [2] found

the following lemma.

(6) For every positive integer k there exists a positive integer K such
that if A and B are two collections of k-element sets, such that A n B -=I=- 0

for every A E A and BE B, then there exists a set M with K elements at most
such that M nAn B -=I=- 0 for every A E A and B E B.

Theorem 24 proved below is a refinement of (6).
Let K(k) be the smallest K satisfying (6) and rp(k) as defined prior to

Theorem 15.

THEOREM 23. rp(k) = K(k).

Proof rp(k) ~ K(k). Let A and B be two collections of k-e1ement sets
and M a K(k)-element set which is minimal such that M nAn B -=I=- 0
for every A E A and BE B. We define two unions of k-cylinders

Fo = U {x E {O, l}M: x(j) = 0 for aUj EM n A},
AEA

F1 = U{x E {O, l}M: x(j) = 1 for allj EM n B}.
BEB

It is clear that Fo n F1 = 0. We put X = Fo U F1 and define f: X ----+ {O, I}
putting f -1(0) = Fo and f -1(1) = F1 •

Thus, f is regular k-continuous.
To see that f depends on all its K(k) variables let i E M. Hence, since M

is minimal there are A E A, BE B such that M nAn B = {i}. Let

X(j) = l~
for jEMn A,
for jEM - A,
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and y(j) = xU) for j c/=- i and y(i) = 1. Hence, y(j) = 1 for all j E M n B.
Thus, f(x) = °and fey) = 1 but x and y differ only at the ith coordinate.

Therefore, cp(k) ::> K(k).
cp(k) :S;; K(k). Let f: X -- {a, I} be regular k-continuous and X be a union

of k-cylinders in {a, l}"'(kH-t, and letf depend on cp(k) variables Xl, .. ·, Xq>lkl .
For each k-cylinder C in {a, l}"'lkl+t we put

F(C) = a,

where a: B(C) -- {a, I} is such that

C = {x E {a, l}"'(kl+t : x ~ B(C) = a}

(7)

(hence, a is a function and is a set ofk ordered pairs). Let 1 - a: B(C) -- {a, I}
be defined by (1 - a)(i) = 1 - a(i) for all i E B(C). We put

A = {F(C): C C X, C is a k-cylinder, f(C) = {On.

B = {I - F(C): C C X, C is a k-cylinder, f(C) = {In.

We have A nBc/=- 0 for each A E A and BE B since otherwise there would
be a k-cylinder Co C X with f(Co) = {OJ and a k-cylinder CI C X with
f(CI) = {I} such that F(Co) u F(CI) is a function. But then Co n CI c/=- 0,

which is a contradiction.
Now we will show that if M nAn B c/=- 0 for each A E A and BE B

then for every i E{I,... , cp(k)} there is a pair <i, b), where bE {a, I}, which
belongs to M. This will finish the proof since it implies that M has at least
cp(k) elements and hence K(k) ::> cp(k).

Since f is k-continuous and depends on Xi for every i E{I,..., cp(k)} it
follows that for each such i there are two disjoint k-cylinders Co and CI such
that i E B(Co) n B(CI ), F(Co)(i) c/=- F(CI)(i) and F(Co)(j) = F(CI)(j) for every
j E B(Co) n B(CI ) - {i}. Hence, F(Co) n (1 - F(CI»is a singleton {<i, b)}
and <i, b) EM since M () F(Co) n (1 - F(CI»c/=- 0. Q.E.D.

THEOREM 24. 2k + (2:) :S;; K(k + 1) :S;; (2k + 1) 4k •

Proof. The first inequality is due to Frances Yao. Her proof is the
following. Let K be a set with card(K) = 2k. Let A = {A U {A} : A C K and
card(A) = k} and B = {(K - A) U {A} : A C K and card(A) = k}. Thus,
for each A E A and B E B we have card(A) = card(B) = k + 1 and
A nBc/=- 0. Also it is clear that the minimal set which intersects all inter
sections A n B is

K U {{A} : A C K and card(A) = k},
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which has cardinality 2k + eD as desired. (An alternative proof follows
from Theorem 23 and Proposition 17 and a stronger inequality from
Theorem 17A.)

To prove the second inequality (improved in Note 6 at the end of this
paper) we need the following lemma.

LEMMA 25. Let AI, ... , An, BI , ... , Bn be k-element sets such that
Ai n B j = 0 iffi = j. Then

Proof Let n(k, m) be the maximal n as above such that Ai and Bi satisfy
the additional condition card( U;~l (Ai U Bi )) ~ m. Thus, n(k, m) ~ ('J:).
We need the following auxiliary facts

n(k, m) ~ n(k, m + 1),

'2k)n(k, 2k) = (k '

n(k, 2(k + I)) (~/) ~ n(k + I, 2(k + I)).

(8)

(9)

(10)

(8) and (9) are obvious. (10) is proved as follows. Let Ai, B i C U,
card(U) = 2(k + I), card(A i ) = card(Bi ) = k and Ai n B j = 0 iff i = j for
i, j = 1,... , n(k, 2(k + I)). Let Ui = U - (Ai UBi). Hence, card(Ui) = 21.
Let Gri for r = 1,... , ef) be the sequence of all subsets of Ui having 1elements.
We put

and

Hence, card(Air) = card(Bir) = k + 1 for all i and r, card( U(A ir U Bir)) ~
card(U) = 2(k + I) and Air n B js = 0 iff (i, r) = (j, s), and (10) follows.

By (9) and (10)

Since

lim (2(k + 1))/(2/) = 4k

[-HYO k + 1 1

and by (8) we get Lemma 25.
Now we conclude the proof of Theorem 24. Let A and B be collections of

sets such that for every A E A and BE B card(A) ~ k + 1, card(B) ~ k + 1
and A n B oF 0. We can assume without loss of generality that for every
u E U, where U = UAEA.BEB (A U B), there are A E A and BE B such that
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An B = {u}. Thus, the proof of Theorem 24 will be completed if we show

card(U) ,-:;; (2k + 1) 4k
• (11)

To show this let a set FeU be called free if for every u E F there are A E A
and BE B such that A n B = {u} and (A U B) n F = {u}. We shall prove
first that

(12) U is a union of no more than 2k + I disjoint free sets.

We shall produce a sequence F1 , ... , F2k+l of disjoint free sets covering U
by assigning one by one the elements of U to the Fi • Given u E U
not yet assigned let {u} = An B for some A E A and BE B. Thus,
card(A U B - {un ,-:;; 2k. We assign u to any of the sets F; which is still
disjoint with A U B - {u} (such an F; exists since there are 2k + I of them).
If the original set Fi was free then the extended set F; is still free. Thus, (12)
is proved.

(13) A free set has no more than 4k elements.

Let F be a free set and for every u E F and let Au E A and Bu E B be such
that Au n Bu = {u} and (Au U Bu) n F = {u}. The systems Au - {u},
Bu - {u}, where u E F satisfy the assumptions of Lemma 25 (except possibly
that some of these sets may have less than k elements, but then they could
be extended so to have exactly k). Hence, card(F) ,-:;; 4k and (13) follow.

By (12) and (13) we get (11). Q.E.D.

Remark 9. Since e:) ,...., 4k j(rrk)1/2 it follows that the estimates of Theo
rem 24 are not too bad. Still in view of the next remark one would like to
know more.

Remark 10. What is the best way to organize the computation of a
k-continuous function f known on a sufficiently large set N? Sometimes it
may be better to store the pairs (F(C), b(C» (see formula (7)), where
f(C n X) = {b(C)}, for a minimal set of k-cylinders C covering the domain
X of f and such that f(C n X) = {a} or f(C n X) = {I}. Then given x E X,
at which we want to evaluate f, we look for such F(C) in this memory which
satisfies F(C) C x, and the corresponding b(C) is f(x). But there may be
large irredundant coverings of X with k-cylinders while very small ones
exist too. How to find a small one (if it exists)? (See [1] for material somewhat
related to this problem).

This question is important in view of the following difficulty of applying
the algorithm. Suppose that we have a table of f~ N for N r:;;. {a, I}2oo,
card(N) = 26,746 and f is 2-valued and 5-continuous. Given x E {a, I}2oo,
to apply the algorithm for estimating f(x), we must find a 5-cylinder C
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containing x such that fi (N r. C) is a constant. But there are
(2~O) = 2,535,650,040 5-cylinders containing x, and, hence, the search is
rather prohibitive. A remedy is proposed in A. Ehrenfeucht and Jan Mycielski,
Organisation of memory, Proc. Nat. Acad. Sci. USA, (1973).

Remark II. In view of Theorem 22 and Remark 10 it would be interesting
to estimate the maximum number of k-cylinders in a minimal covering of
{O, l}m or of any union of k-cylinders in {O, l}m. In this respect we have the
following observations made by D. B. Thompson and the referee. (I) For
m > I, {O, I}m has a minimal covering with 2m 2-cylinders {x: Xl = X m = v}
and {x: Xi = v, Xi+l = I - v}, where v = 0, I and i = I, ... , m - 1.
(2) {O, l}m - {(O, ... , O)} has a minimal covering with m I-cylinders and, if m
is even, with!m 2-cylinders {x: Xi = Xi+m/2 = I} and {x: Xi = I, Xi+m/2 = O},
where i = I,... , m and + denotes addition mod m. (3) {x E {O, l}m:
Xl + ... + X m ;?; k} has minimal covering with (~) k-cylinders.

Note 1. J. H. Spencer (see [5]) proved the following theorem related to
Lemma 4.

THEOREM. There exists a set N C X such that N r. D =F 0 for every
D E D and card(N) is the least integer not less than

log d + I + log(-log(l - fLo»
-log(l - fLo)

This theorem permits to improve some estimates following Propositions II
and 12. But his construction of this set N is not random as in Lemma 4,
and, hence, it does not permit to improve our results, say Theorem 9.

Note 2. A matrix similar to the Ol-matrix in the proof of McKenzie in
Remark 6 was used by J. H. Spencer, Minimal completely separating
systems, J. Combinatorial Theory 8(1970),446-447.

Note 3. Proposition 17 and the first inequality of Theorems 15 and 24
can be improved as follows.

THEOREM 17A. There exist (k + 2)-continuousfunctionsf: {O, l}m -+ {O, I},
where m = 2k + 4(2D, depending on all m variables.

Proof Let K be a set with card(K) = 2k and 10: {O, 1}4 -+ {O, I} be a
2-continuous function depending on all 4 variables (e.g. fo(x, y, u, v) = 0 if
x = y = 0 or u = v = 0 and fo(x, y, u, v) = 1 if 1 E {x, y} r. {u, v}). We put

M = K U ({A: A C K and card(A) = k} X {O, 1,2, 3}).

Hence, card(M) = m. Let us define f: {O, l}M -+ {O, l} as follows: If
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X E {O, I}M then (1) if card({i E K: x(i) = On > k then f(x) = 0; (2) if
card({i E K: x(i) = I}) > k then f(x) = 1; (3) if Ax = {i E K: xCi) = O} and
card(A x) = kthenlety(j) = x(Ax ,j»)forj = 0,1,2,3 and letf(x) = Jo(y).

To see that f thus defined is (k + 2)-continuous notice that if case (1) or
(2) applies then there exists a (k + I)-cylinder C with x E C and n C is
a constant. If case (3) applies and foe y) = 0 and Cy ~ {O, I}4 is a 2-cylinder
with y E Cy and fo ~ Cy a constant, then the (k + 2)-cylinder

C = {z E {O, I}M: z(i) = x(i) for i E Ax U ({Ax} X B(Cy ))}

contains x and f~ C is a constant. While if Jo(y) = I and Cy is as above
then the (k + 2)-cylinder

C = {z E {O, I}M: z(i) = x(i) for i E (K - Ax) U ({Ax} X B(Cy ))}

also contains x and f~ C is a constant. Thus, f is (k + 2)-continuous. It is
also visible that f depends on all m variables. Q.E.D.

Note 4. An example of regular k-continuous functions depending on
3 . 2k - l - 2 variables.

Consider the following partitions of a square into 3 . 2k - l - 2 squares.

k:2 k:3 k:4

Let Ak be the collection of sets of squares of the kth picture whose interiors
can be intersected by one horizontal line and Bk be the collection of sets of
squares of the kth picture whose interiors can be intersected by one vertical
line. Now if M nAn B =F 0 for all A E Ak and BE Bk then M consists
of all the squares of the kth picture. The regular k-continuous functions are
constructed from Ak and Bk as in the first part of the proof of Theorem 23.

Note 5. We give an example of a regular 3-continuous function
f: X -+ {O, I}, where X ~ {O, 1}8, such thatf can not be extended to a 3-con
tinuous function f*: {O, 1}8 -+ {O, I}. Let + denote addition mod 8. We
define two unions of 3-cylinders

Xo = {x E{O, 1}8: 3i[(Xi , Xi+! , Xi+2) = (0, 0, Om,

Xl = {x E{O, 1}8: 3i[(Xi, Xi+2, Xi+s) = (1, 1, I))}.
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We put X = Xo U Xl and, since Xo () Xl = 0, we can define f putting
f-l(O) = Xo ,1-1(1) = Xl' It is easy to check that every 3-cylinder containing
the point (0,0, 1, 1,0,0, 1, 1) intersects both Xo and Xl . Hence, no f* can
exist.

Problem. Under what conditions can a regular k-continuous function
with domain included in {O, l}m be extended to a k-continuous function over
{O,I}m?

Note 6 (added on September 20,1973). The upper estimate of Theorems
15 and 24 can be improved as follows

g;(k + 1) ~ (2k + l)(~).

This follows from the following refinement of Lemma 25 which itself
follows from Theorem 2 of B. Bollobas, On generalised graphs, Acta Math.
Acad. Sci. Hung. 16 (1965), 447-452.

LEMMA 25A. If card(A;) = a, card(B;)
Ai () B j = 0 iffi = j then

b for 1,..., nand

The following elegant proof was given by G. O. H. Katona. Let

n

S = U (Ai U B;)
i=l

and s = card(S). For every linear ordering < of S there exists at most one i
such that for every x E Ai , Y E Bi we have x < y. In fact if there was another
such index, say j, then there are x' E A j () Bi and y' E Bj () Ai and x' < y' is
absurd. For every i there are exactly

orders < of S such that x < y for all x E Ai, Y E Bi . There are s! orders
< of S. Hence

n (a ~ b) a!b!(s - a - b)! ~ s!,

which implies Lemma 25A.
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